
Evaluation of an Object-Based Data Model
Implemented Over a Proprietary, Legacy Data Model

Daniel L. Pollard, Joseph W. Hales, PhD
Division of Medical Informatics, Duke University Medical Center, Durham, NC

Most computerized medical information today is
contained in legacy systems. As vendors slowly
move to open systems, legacy systems renain in
use and contain valuable information. This
paper evaluates the use of an object model
imposed on an existing database to improve the
ease with which data can be accessed. This
study demonstrates that data elements can be
retrieved without specific programming
knowledge of the underlying data structure. It
also suggests that underlying data structures
can be changed without updating application
code. Programs written using the object model
were easier to program but ran greater than one
order of magnitude slower than traditionally
coded programs. In this paper, the legacy
information system is introduced, the methods
used to implement and evaluate the object-
based data model are explained, and the results
and conclusions are presented.

INTRODUCTION

TMR (The Medical Record)' is a longitudinal
computer-based patient record which has been
developed at Duke University over the last 20
years. It is in use in eight sites at Duke
University Medical Center and in ten sites
outside of Duke. Like many legacy systems,
TMR is written in a proprietary language
(GEMISCH)23 and uses a proprietary database
system.

We are in the midst of re-engineering TMR to
move from its proprietary database management
system (DBMS) to an off-the-shelf DBMS.
Once the transition is complete, we expect to be
able to use a standardized tool such as SQL to
perform the majority of our queries. But until
the massive re-engineering project is finished,
we need an interiin solution to better access the
wealth of information contained in our legacy
system.

Currently, extracting information from TMR
requires custom programming. General

extraction metlhods do exist but are difficult to
use or do not provide access to every data
element. To produce custom reports,
programmers must be taught the structure of the
TMR patient record and then hard-code it into
their applications. Many problems have resulted
from this hardcoding of structural information
into application programs: data are retrieved
inconsistently due to differences in the
individual coding styles of programmers;
improvements in TMR which change the data
structure require massive reprogramming of
applications; training new programmers is
expensive and time consuming.

To remedy these problems, we have created a
system which automatically tags each data
element in TMR with an intuitive, hierarchical
identifier called an object tag. Programmers
and users can now reference TMR data elements
without knowing where and how they are stored
in the patient record; they only need to know the
name of the object's tag. The tagging is
accomplished by extending TMR to include
meta-data. By the term meta-data, we mean
data about data that explicitly defines the
structure of the patient record in a manner
accessible to all applications.

In this paper, we describe the design,
implementation and evaluation of a system to
incorporate meta-data into TMR. First, the
design of the system and the method of
evaluation are discussed. Next, the results of the
evaluation are presented. Finally the results are
discussed.

METHODS AND PROCEDURES

System Design
The TvR patient record is a modular structure
which has nine major sections. The sections
include demographics, appointments, SOAP
notes, problems, medications, studies (laboratory
results), subjective and physical findings,
encounters and accounting. The accounting

0195-4210/95/$5.00 C 1995 AMIA. Inc. 367

section was selected for this project as a
prototypical section. The accounting section
contains over 100 individual data elements
which can be represented in a hierarchical
structure seven levels deep. This section was
chosen for two reasons. First, the accounting
section's complexity is about average compared
with data found elsewhere in the patient record.
Secondly, a generalized method for getting at
this data does not exist.

Three steps were involved in incorporating
meta-data into TMR. First, an object-based
model ofTMR was derived. Next, an editor was
written to capture and store the meta-data.
Finally, a generalized engine was programmed
to interpret the meta-data. These steps are
described in the following paragraphs.

Table 1. TMR Objects Table 2. TMR Atoms

-Obects Types. Atom Types
Section Date
Block Value
Line TMR Code
Field Free Text
Molecule ID Number
Atom Modifier

Counter
Pointer
Time
Delimiter

To define an object-based model as proposed by
Hales', we performed an object-oriented
analysis' of the structure of the accounting
section. Table 1 lists the different types of
objects identified in the analysis. The objects
were derived from the logical and physical
structure of the patient record. The specific data

elements found in the accounting section are
called atoms in our object-based model. The
types of atoms are listed in Table 2.

Next, we created a data structure called an
object frame. An object frame is a
representational structure containing a set of
attributes' which describe a TMR data element.
It should be noted that the object frame does not
explicitly contain any methods7 (methods as
defined in the object oriented paradigm) but
some of the attributes stored in the frame do
provide the information needed to link object
with the appropriate methods. An object frame
is defined for each data element present in the
TMR accounting section. The attributes which
constitute an object frame are listed and
described in Table 3.

An object frame definition editor was designed
to capture efficiently the attributes of each TMR
object and specify the relationships between the
objects. The editor was implemented using an
off-the-shelf relational database (Microsoft
Access 2.0). In addition to capturing an object's
attributes, the editor automatically generates an
object tag for each object. The object tag is a
hierarchical name which uniquely identifies
each object. The object's tag is generated by
starting with the object's name and pre-pending
the name of the parent object, and then pre-
pending the name of the parent's parent, etc.
until the root object's name is pre-pended. In
this study, the root object is the accounting
section and it has a the name: ACC.

Each tag can be alternatively represented by
using the ID numbers of each object in the
lineage. This form is called the dot notation.

Table 3. Attributes of an Object Frame and an Example
Attribute
Name Description Example
Object ID Unique ID of object 15
Object Name Name of object PAT
Parent ID Object ID of parent object 14
Description Description of the TMR data element Patient responsible balance owed
Offset Logical offset of data element within the TMR record structure 1
Object Type Type of object (see Table)) atom
Atom Type Type ofatom (see Table 2) value
Delimiter Type of delimiter used to separate like objects
Substructure Sub-object (children) none

368

The following example illustrates how both the
object tag and dot notation are derived from the
hierarchical structure of the objects. The
example calculates the object tag and dot
notation for a the patient responsible balance
owed (PAT) object which is defined in the object
frame example in Table 3.

Figure 1. Hierarchical Structure of Selected
Accounting-Objects

| CC (1)|

|[ACC] (3) D 2

AL(14)

PAT (15) | CO (6)

The boxes in Figure I represent objects and are
labeled with the attribute Object Name. The
number in parenthesis is the Object ID. The
lines represent the parent/child relationship
between the different objects. Starting with a
target object (PAT) and following the hierarchy
up to the root (ACC) its object tag and dot
notation cani be defined. For example, the object
tag for PAT is ACC.HDR.BAL.PAT and the
corresponding dot notation is 1.2.14.15. The
object tag for BAL is ACC.HDR.BAL while the
dot notation is 1.2.14.

The frame editor generates two outputs. The
first is a table of all the object frames and their
corresponding attributes. The second is a table
which translates the object tags to their dot
notation. These two tables were exported into a
format readable by the TMR system. These files
created on the TMR system constitute the first
half of the meta-dictionary.

The second half of the meta-dictionary is the dot
notation resolution engine. The engine was
written to resolve object tags into their
corresponding dot notation and to retrieve the
specified data element from the patient record.
It is important to note the general nature of this
engine and the fact that it only uses the
information contained within the meta-
dictionary to retrieve the patient data. In object
oriented terminology, the engine contains a
generalized set of methods which it assigns to
the objects.

Physically, the engine is written in TMR's
proprietary language GEMISCH and is run as a
subroutine which can be attached to any
GEMISCH application. The engine has a
common interface from which it receives the
object tag of the desired data element. It then
returns the referenced data element from the
current patient record. The engine can interpret
all of the data structures present in the
accounting section. Extending this engine to
include all of TMR's data structures is quite
feasible.

System Evaluation
Three financial reports, in increasing order of
complexity, were devised to evaluate the ease of
use and performance of the dot notation
resolution engine.

* REPORTI lists each patient's name and
outstanding balance.

* REPORT2 generates a report of each
patient's most recent charge.

* REPORT3 generates a detailed report of the
patient payments for each of their
encounters along with a total amount due.

Each report was programmed by an experienced
GEMISCH programmer using two different
coding metlhods. The first version used
traditional hard coding techniques and the
second version used tagged objects. Two
measurements were taken for each of the six
programs: 1) the time to write the portion of the
program which retrieved the data from the
patient record and 2) the time to execute each
report for 100 patients.

RESULTS

The results from the study comparing the
performance of three report generating
programs are presented in Table 4. Two
versions of each program were written: the hard
coded version and the tagged object version.

These findings show that the programs using
tagged objects took less time to code but
performed much slower than the hard coded
programs.

For all three reports, the output from the hard-
coded version is identical to the output from the
tagged-object version.

369

Table 4. Time to Code and Run the Hardcoded
and Tagged Object Application Programs

Program Coding Coding Run
Name Method Time Time

(mintes) (minutes)_
REPORTI Hard 2:00 0:04

Tagged 2:00 3:20
REPORT2 Hard 4:00 0:05

Tagged 4:00 5:15
REPORT3 Hard 7:00 0:05

Tagged 5:00 6:13

DISCUSSION

The results indicate that the tagged-object
reports successfully generated the same output
as the hard-coded reports. Functionally, it did
not matter which method was used to generate
the report. The only measured differences were
in application running time and in application
coding time.

Application Running Time
For all of the reports, the tagged-object version
ran greater than an order of magnitude slower.
The slower performance of the tagged-object
version can be attributed to two factors. First,
the method of translation from the object tag to
the dot notation is inefficient. The current
implementation uses a linear search of an
external file to perform this match. The hard
coded program did not have to do this
translation. The second factor is the
implementation language of the dot notation
resolution engine. It is coded in GEMISCH, the
same language as the report generation
programs. All of the hard coded programs' calls
are implemented at the assembly language level.

The first pass at improving the efficiency of the
meta-dictionary should be focused on the name
resolution procedure. Replacing the linear
search with either a binary search or an index
should dramatically decrease the run time.

The next improvement would be to rewrite the
dot notation resolution engine in lower level
code (assembly language) and incorporate it into
the GEMISCH language. This will have two
benefits. First, the engine should run faster in
assembly language. Secondly, programming
using tagged objects could be streamlined.
Currently, an object tag must be placed in a

variable, resolved and the result placed into a
new variable before it can be integrated within
traditional GEMISCH programming structures.
Optimally, the object tag would need no special
treatment and could be embedded directly within
existing programming structures.

We expect these improvements to increase the
speed of execution to within the same order of
magnitude as a hard coded TMR program. At
this level, it becomes realistic to tradeoff a
slower performance for a major simplification in
programming.

Application Coding Time
The differences in coding time for an
experienced GEMISCH programmer are not
substantial. For data elements deep within the
patient record hierarchy, the object tags reduce
the amount of programmer written code need to
extract them.

The major benefit to using tagged objects is
expected to be seen with inexperienced and non-
GEMISCH programmers (which includes most
TMR users). The novice or non programmers
would not have to understand the structure of
the patient information and could retrieve data
simply by object tag. Getting at the data now
becomes much easier and requires less
dependence on system programmers. Non
GEMISCH programs can be written to retrieve
information from the engine. TMR can be
opened up to whole new groups of users
including clinicians, researchers and
administrators.

Other Results
The most significant result of this study is not
seen in the results section. Simply the success
of the tagged object programs shows that an
object model can be successfully placed on top of
an existing, proprietary, legacy data model.
This has two major implications: 1) data
elements can be retrieved without knowledge of
the underlying structure, and 2) the data
structures can be changed without updating
application code. Derived benefits of this work
include the ability to create a generalized report
generator, a reduction in complexity of the
application code and a reduction in application
maintenance.

370

FUTURE DIRECTIONS:

The preliminary evaluation of the object tags
presented in this paper is promising, but further
evaluations should be made. Additional
measurements should be made to measure the
difference in time it takes to teach a non-
programmer to use tagged objects vs. the time it
takes to teach them the TMR data structure and
its implementation in GEMISCH. Also, the
retrieval speed of tagged objects should be
compared with retrieval using standard query
tools of relational databases7.

After additional evaluation, future work should
focus on improving the execution speed of the
dot notation resolution engine. Additionally, the
set of methods available to the engine should be
expanded. One such method would be the
ability to store tagged objects back to the patient
record. Finally, the engine should be extended
to include all sections ofTMR.

The study has contributed to the task of
identifying the structure and type of the data
elements which have evolved in TMR over the
last 20 years. By systematically placing an
object model over TMR, we are explicitly
defining the content of a well developed and
proven computerized patient record.

Acknowledgments
This work was supported in part by National
Library of Medicine Training Grant LM07071-3

References
Stead WW, Hammond WE. Computer-based

medical records: the centerpiece ofTMR. MD
Comput 1988;5(5):48-62.

2 Straube MJ, Hammond WE, Stead WW. The
GEMISCH programming language. In: Orthner
HF, Blum BI, ed. Implementing Health Care
Information Systems. New York: Springer-
Verlag, 1989:384-395.

3 Hammond WE, Stead WW. The evolution of
GEMISCH and TMR. In: Orthner HF ed.
Proceedings of the Tenth Annual Symposium on
Computer Applications in Medical Care. New
York: IEEE 1986;147-156.

4 Hales JW. Reverse engineering objects into
the TMR record structure. American Medical
Informatics Association Spring Congress. San
Francisco, CA. 1994;82.

Coad P, Yourdon E. Object-oriented analysis.
Englewood Cliffs, New Jersey: Yourdon Press
1991.

Rumbaugh J, Blaha M, Premerlani W, Eddy
F, Lorensen W. Object-Oriented modeling and
design. Englewood Cliffs, New Jersey: Prentice
Hall, 1991.

I Prather J, Hales JW, Lobach DF, Hage ML,
Fehrs, SJ, Hammond WE. Converting a legacy
system database into relational format to
enhance query efficiency. Symposium on
Computer Applications in Medical Care
submission. April 24, 1995.

371

